Die DHT® Thermoschock-Prüfkammer

Was ist eine Wärme-Schock-Kammer und wie funktioniert sie?

Geschrieben von Shirley
Produktmanager, Doaho Test (DHT®)
In modern manufacturing and advanced technology fields, one critical challenge products must face is their ability to withstand thermal shock — rapid changes in temperature. From electronic devices and automotive parts to aerospace materials and even medical equipment, products need to undergo rigorous testing under extreme temperature variations during development to ensure structural stability, reliable connections, and lasting performance.
Ein Thermoschockkammer ist genau für diesen Zweck entworfen. Es ist ein spezialisiertes Gerät, das schnelle Temperaturänderungen simuliert und Testproben schnell extremen Schwankungen von heiß zu kalt aussetzt – oder umgekehrt – um ihre Widerstandsfähigkeit gegenüber thermischem Stress genau zu bewerten. Aber wie genau funktioniert eine Thermoschockkammer? Was sind ihre Kernkomponenten, Schlüsseltechnologien und praktischen Anwendungen? Dieser Artikel wird tief in diese Fragen eintauchen.

Purpose of Thermal Shock Testing: Recreating “Instant Extremes” to Verify True Reliability

In real-world use, products often experience sudden exposure to very hot or very cold environments. For example:
  • A smartphone taken from an air-conditioned room into scorching outdoor heat;
  • A car engine rapidly warming up after a cold winter start;
  • Aircraft encountering sharp temperature shifts at high altitudes.
These abrupt environmental changes put tremendous stress on materials, electrical connections, seals, and coatings. The core goal of thermal shock testing is to simulate these instant, extreme temperature transitions and verify whether a product’s physical, chemical, and mechanical properties remain reliable under such discontinuous thermal conditions.

How It Works: Alternating Temperature Zones + Rapid Transfer Mechanism

The basic principle behind a Temperaturschockkammer is to rapidly move the test sample between two or three temperature zones to create an immediate switch between hot and cold environments, thereby subjecting the sample to “thermal stress shocks.”
Common types include:
  • Air-to-Air (Two-Zone or Three-Zone) Chambers
      This is the most widely used thermal shock chamber type. It consists of high-temperature, low-temperature, and testing zones (or a movable testing platform that shifts between zones):
    • Samples are quickly transferred between zones using mechanical devices like lift tables or air doors;
    • Heat exchange is done entirely through air convection;
    • Temperature ranges usually span from -70°C up to +200°C, with transfer times under 10 seconds.
  • Liquid-to-Liquid (or Air-Liquid Hybrid) Chambers
Used for extreme applications such as military or semiconductor packaging tests, samples are immersed in liquid baths at different temperatures to achieve faster and more intense thermal shocks. This method offers higher heat transfer efficiency but requires stricter sealing of the samples.

Key Systems and Technical Components

Temperature Control: Rapid Heating + Multi-Stage Cooling

  • Heating: Typically uses nickel-chromium alloy electric heaters for fast ramp-up, reaching +150°C to +200°C quickly.
  • Cooling: Employs cascade refrigeration systems combining low-temperature refrigerants (like R23, R508) with mid-to-high temperature refrigerants, capable of rapidly cooling down to -40°C, -55°C, or even -70°C.

Transfer Mechanism: Air Doors, Platforms, or Robotic Arms

  • Mechanical transfer: Samples are moved between temperature zones via lifts, rails, or robotic arms.
  • Airflow switching: The sample stays in place while air ducts and doors switch heat sources to rapidly change the ambient temperature.
  • Transfer times range from 5 to 15 seconds, with strict requirements on temperature uniformity and repeatability.

Airflow System: Ensuring Uniform Temperature Distribution

Efficient ducting and mixing chambers ensure that temperature inside the test chamber is evenly distributed before and after transfers, preventing hotspots or cold spots.

Control System: PID Control + Multi-Profile Programming + Remote Monitoring

  • Programmable logic controllers (PLC) with touchscreens allow precise segmented temperature program settings.
  • Supports editing multiple temperature/time/cycle profiles to comply with standards like MIL-STD-202G and IEC 60068.
  • Features data export, remote monitoring, and alarm linkage for traceability and safety.

Typical Applications and Industry Importance

Thermal shock chambers are indispensable across a wide range of industries, including:
  • Electronics & Semiconductors: Testing BGA packaging, PCB solder joints, and connector heat fatigue resistance.
  • Automobilindustrie: Cold-hot cycling of ECUs, sensors, lighting, ABS modules.
  • Aerospace & Defense: Evaluating missile components and radar systems under extreme conditions.
  • Entwicklung interner Steuerungssysteme: Assessing precision components exposed to temperature variations during shipping and storage.
  • New Energy & Energy Storage: Testing thermal safety of battery modules and charging connectors under shock conditions.
Thermal shock testing helps companies identify potential failure points early in product design, significantly reducing after-sales risks and improving certification success rates.
Challenges and Trends in Thermal Shock Testing
  While crucial for high-reliability products, thermal shock testing comes with challenges:
  • Short temperature recovery times demand high uniformity;
  • Samples can be fragile due to thermal expansion/contraction, risking structural damage;
  • Testing cycles can be long and energy-intensive;
  • Requires highly reliable sealing and transfer mechanisms to handle frequent cycling.
  To address these, recent innovations include:
  • Intelligent control systems with AI-driven predictive maintenance;
  • Liquid nitrogen-assisted rapid cooling to speed temperature drops;
  • Modular designs allowing multi-station parallel testing;
  • Low-energy consumption and environmentally friendly refrigerants compliant with RoHS and REACH.

Conclusion: Managing Thermal Stress, Safeguarding Product Quality

Obwohl sie vielleicht nur wie eine „Blackbox“ im Labor erscheint, ist die Thermoschockkammer is a vital bridge between product design and real-world reliability. The rapid temperature swings it creates test more than the sample itself — they determine whether your product can withstand real-world challenges and thrive in competitive markets.

At DHT®, we specialize in designing precision-engineered Thermal Shock Chambers that help global manufacturers uncover potential weaknesses early, meet international standards, and accelerate product validation. Whether you’re in electronics, aerospace, automotive, or medical technology, our tailored solutions ensure your products are tested with confidence.

Ready to build more reliable products?
Kontakt today for expert advice, custom configurations, and a quote tailored to your testing needs.

Leute fragen auch

Was ist der Zweck einer thermischen Schockkammer?

Eine Wärmeschockkammer wird verwendet, um schnelle Temperaturänderungen—von heiß zu kalt oder umgekehrt—zu simulieren, um die Widerstandsfähigkeit eines Produkts gegen thermische Belastung zu testen. Sie hilft dabei zu bestimmen, ob Materialien, elektronische Komponenten oder mechanische Baugruppen bei plötzlichen, extremen Umweltänderungen ihre strukturelle Integrität bewahren und zuverlässig funktionieren können.

Wie funktioniert eine Thermoschockkammer?

Thermoschockkammern verwenden typischerweise zwei oder drei Temperaturzonen (heiß, kalt und manchmal Umgebung). Die Probe wird entweder physisch zwischen den Zonen transferiert oder kontrollierten Luftstromänderungen ausgesetzt, die schnelle Temperaturwechsel simulieren. Dieses schnelle Zyklen setzt das Produkt unter Stress, um Schwächen in Lötverbindungen, Dichtungen, Beschichtungen oder strukturellen Materialien aufzudecken.

Welche Branchen verwenden häufig Prüfungen auf thermischen Schock?

Thermoschockkammern werden häufig in Branchen wie Elektronik (für Leiterplatten und Steckverbinder), Automobilindustrie (für Steuergeräte und Sensoren), Luft- und Raumfahrt und Verteidigung (für Radar- und Raketenteile), medizinische Geräte und neue Energiesektoren eingesetzt. Diese Tests gewährleisten die Haltbarkeit der Produkte während des Transports, Betriebs und der Lagerung unter extremen Temperaturschwankungen.